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ABSTRACT

Software tools can improve the quality and maintain-
ability of software, but are expensive to acquire, deploy
and maintain, especially in large organizations. We ex-
plore how to quantify the effects of a software tool once
it has been deployed in a development environment. We
present a simple methodology for tool evaluation that
relates tool usage statistics with estimates of developer
effort, as derived from a project’s change history (ver-
sion control system).

We demonstrate our method in a case study of a soft-
ware tool called VE, a version-sensitive editor used in
Bell Labs. VE aids software developers in coping with
the rampant use of certain preprocessor directives (sim-
ilar to #if/#endif in C source files). Our analysis found
that developers were approximately 40% more produc-
tive when using VE than when using standard text ed-
itors.
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1 Introduction

While software tools have the potential to improve the
quality and maintainability of software, acquiring, de-
ploying and maintaining a tool in a large organization
can be an expensive proposition. We explore how to
quantify the effects of existing software tools in ongo-
ing large-scale software projects. We present a simple
methodology that relates tool usage statistics with effort
estimates based on analysis of the change history of a
software project, and a case study based on this method-
ology of a version-sensitive text editor called VE. The
value in performing such a tool analysis is to create data

from which subsequent decisions about the tool use can
be made more effectively (e.g., to keep a tool, to deploy
it more widely, to reward its use, to publish results that
would influence other potential adopters, etc.)

Our work is based on two observations. The first
observation is that a major effect of a software tool, be it
a documentation tool, source code editor, code browser,
slicer, debugger, or memory-leak detector, is to help a
developer determine how to modify a software entity or
directly to aid the developer in making modifications.
The second observation is that the change history of a
software entity (i.e., the version control data about the
modifications to the entity) can be used to estimate the
amount of effort a developer expended on a particular
modification or set of modifications, as well as measures
of the overall time (interval) taken to develop a software
feature.

These observations lead to a simple process for as-
sessing the impact of a software tool:

1. Record the tools a developer uses in the course of
software development and the software entities to
which they were applied.

2. Relate the monitoring information recorded in step
1 to the modifications to software entities that are
recorded by the version control system.

3. Using the data from the previous two steps, analyze
“similar” developers and modifications’ to estimate
how the use/non-use of the tool affected developer
effort and overall interval.

We applied this process to a real-world example from
Lucent Technologies. We present a case study of a soft-
ware tool that provides an elegant solution to the prob-

ISection 5 will qualify and quantify the notions of “similar”
developers and modifications.



lem of rampant use of certain kinds of preprocessor di-
rectives (such as #if/#endif in C source files). These
directives typically are used to create many different
variants, or versions, from a single source file. A devel-
oper editing such files must be careful to make changes
to the appropriate version, so as not to interfere with
other versions [29]. The solution to this problem is a
version-sensitive editor (VE) that hides the preprocess-
ing directives from a developer. VE allows a developer
to edit a particular version of the source file (i.e., a view
of the underlying ASCII file in which certain prepro-
cessing directives have been “compiled” away). As the
user edits this view of the source code, VE translates
editing operations on the view back into the underlying
source file.

Our primary hypothesis is that the VE tool reduces
the effort needed to make changes involving preproces-
sor directives. Our secondary hypothesis is that the
usage of VE would lead shorter development intervals.
We test these hypotheses via a quantitative analysis of
developer effort and development interval based on the
change history of a very large software product in which
both VE and other text editors were used. For each
change made to the software, we were able to deter-
mine whether or not VE was used to make the change.
By combining this information with the developer effort
analysis, we found that developers who used VE were on
average 40% more productive than when using standard
text editors (when changing files containing preproces-
sor directives). We also found a corresponding decrease
in the development interval of new software features.

Through our case study, we illustrate a number of
problems that must be solved to arrive at an accurate
estimate of how software tools impact developer effort.
Primarily, these are problems of how to control for key
sources of variation such as:

e Developer work-style and experience;
o Size of changes to software;

o Type of changes (new feature, bug fix, code cleanup,
code inspection,).

Our work is complementary to the analysis of tools
in controlled settings [16, 15, 22] and software tool as-
sessment [24, 21, 6]. Controlled experiments on tool use
can yield valuable insights about the utility of a tool
on small scale examples; our work seeks to address the
ongoing impact of a tool in an industrial development
environment. Software tool assessment compares var-
ious tools to one another and attempts to predict the
impact of a tool on a project before deployment. Our
work complements such assessments by providing infor-
mation on tool impact during deployment.

The paper is organized as follows. Section 2 provides
background on version control systems and the problem

of preprocessor directives in the particular project un-
der study. Section 3 describes the version editor (VE)
tool and how it addresses the problem of preprocessor
directives. Section 4 summarizes our methodology and
algorithm for analyzing version control data in order
to estimate the effort expended by developers to make
changes. Section 5 presents the results of applying this
algorithm to the version control data from a large soft-
ware system in which VE and other text editors were
used. Section 6 describes analyses of VE’s effects on
interval and quality. Section 7 discusses related work.

2 Background

The case study here revolves around a commercially
successful multi-million line software product (a large
telephone switching system) developed over two decades
by more than 5,000 developers. We first present back-
ground material on the version control system used by
the project and then describe the project-specific ver-
sioning problems that led to the creation of the VE tool.

2.1 Version Control System and Data

The extended change management system (ECMS) [18],
layered on top of the source code control system
(SCCS) [25], was used to manage the source code of
the product.

We present a simplified description of the data col-
lected by SCCS and ECMS that are relevant to our
study. ECMS, like most version control systems, oper-
ates over a set of files containing the text lines of source
code. An atomic change, or delta, to the program text
consists of the lines that were deleted and those that
were added in order to make a change. Deltas are usu-
ally computed by a file differencing algorithm (such as
Unix diff), invoked by SCCS, which compares an older
version of a file with the current version.

ECMS records the following attributes for each
change: the file with which it is associated; the date
and time the change was “checked in”; and the name
and login of the developer who made it. Additionally,
the SCCS database records each delta as a tuple in-
cluding the actual source code that was changed (lines
deleted and lines added), login of the developer, MR
number (see below), and the date and time of change.

In order to make a change to a software system, a de-
veloper may have to modify many files. ECMS groups
deltas to the source code recorded by SCCS (over po-
tentially many files) into logical changes referred to as
Maintenance Requests (MRs). There is one developer
per MR. An MR may have an English abstract as-
sociated with it that the developer provides, describ-
ing the purpose of the change. The open time of the
MR is recorded in ECMS. We use the time of the last



delta of an MR as the MR close time. We performed
textual analysis of the MR abstracts to infer the pur-
pose of a change [19]. Upon taking out an MR, de-
velopers write a short description of the purpose for
the change in English. The terms used in such ab-
stracts are classified as pertaining to new feature de-
velopment (NEW), corrective activity (BUG), restruc-
turing/cleanup (CLEANUP), or code inspection (IN-
SPECT). For example, an MR whose abstract contains
the term “uninitialized variable” is classified as BUG,
whereas an abstract containing the term “new feature”
is classified as NEW, and an abstract containing “re-
move old code” is classified as CLEANUP. We classi-
fied each MR depending on which terms appear in their
abstracts, per the methodology in [19]. In the project,
5% of MRs were done to implement recommendations of
code inspection meetings (INSPECT) (containing “code
inspection” in their abstract.) The classification was
validated in follow-up developer surveys.

The INSPECT MRs were separated from the other
three types because they differed substantially from
other MRs done in this project. First, they were done
according to detailed prescriptions from code inspection
meetings and involved little creativity on the part of the
developer (code inspections MRs are “busy work”, in
the words of one developer). Second, they had a large
number of deltas (we use this parameter to model the
effort in Section 5), but they were not difficult to imple-
ment, since the changes were prescribed by a team of
developers preparing for and participating in the code
inspection meeting. Third, inspection MRs included
all recommendations of the code review meeting rang-
ing from bug fixes to improving comments and variable
names. Thus, INSPECT MRs are a mixture of bug fix-
ing and cleanup activity. Consequently, it was essential
to separate INSPECT MRs into a distinct class to im-
prove the effort model for this product. Other products
might contain few or no INSPECT MRs, thereby sim-
plifying the classification.

The way developers work on MRs might vary across
organizations. We illustrate the work patterns in the
considered organization. Figure 1 shows MR intervals
for two representative developers. Each horizontal dash
represents one MR. The starting and ending positions of
the dash represent the open and close time for the MR.
The vertical axis represents cumulative counts of MRs
for each developer. Figure 1 shows two distinct styles of
work. One developer always closes MRs quickly (curve
to the bottom right). The other developer occasion-
ally leaves MRs open up to several months. Most MRs
are completed within a week for both developers, which
means that the monthly time sheet reports of developers
are of an appropriate granularity to track the amount
of time developers spend on MRs.
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Figure 1: MR intervals for two developers.

2.2 The #version Problem

The software product in our case study requires the con-
current development and maintenance of many sequen-
tial versions as well as two main variants for domestic
and international configurations of the product. From
a version management point of view, source code may
be common to as many as two dozen distinct releases
of the code. Some of these releases correspond to de-
ployed products for which only maintenance changes are
made, while others correspond to versions under active
development.

The software releases form a version hierarchy with
two main variants and chronological release sequences
within each of these. Several constraints on the project
management are reflected in the way source changes are
made to preserve this hierarchy. First, it is imperative
that the new development or maintenance changes made
for one software release not impact the previous release
in the sequence or any release in the other main vari-
ant. Second, it is important that as much commonality
of code be preserved as possible: changes made in an
earlier release should automatically appear in the later
releases in that sequence. In the examples that follow,
the two main variant lines are designated as ‘A’ and
‘B’, and the sequential releases within each main line
are designated by ascending numbers, e.g., 1A, 2A, 1B,
2B, and so on. To achieve the second objective, most
of the source files are shared among the releases, with
release specific differences delineated as described in the
following paragraphs.

The industrial source code management technology of
the early 1980’s did not have good support for branch-
ing. That is, there were no tools for maintaining source
that was mostly common to many releases but contained
some release specific changes, and no tools for auto-



matically merging separate changes to a common code
base. To address the multiple release requirements of
the project under study, a specialized directive #ver-
sion was used to allow for release specific variations in
the code, as shown in Figure 2. The #version construct
permits a single source file to be extracted to produce
a different version for each software release. We can
think of this construct as a C preprocessor #if direc-
tive where only one Boolean variable is used for control,
the variable may be negated, and the variable comes
from a restricted set that contains one variable for each
software release. Various tools are used to verify the
consistent use of these constructs according to a release
hierarchy maintained by the system. For example, the
tools guarantee that a change checked in for 5A will not
affect the source extraction for 4A or earlier or any of
the ‘B’ releases. Tools are also provided to perform the
extraction of the source code for building each software
release, again according to the version hierarchy. For
example, extraction for release 4A implies that the ver-
sion variables 4A, 3A, 2A, and 1A are true and all other
version variables are false.

When a developer introduces new code for a release,
the new code must be bracketed by a #version con-
struct for the specific release for which the change is
targeted. When a developer changes existing code for
a release, the existing code must be logically removed
with a #version using the negation of the target release,
and the change introduced with a #version for the tar-
get release. Figure 2 shows how #version lines are used
to change the expression in an if-then statement for
Release 5A. The original if-then statement was code
inserted for Release 4A.

As the example shows, even a one line change to the
code requires the developer to add five lines to the file
(four control lines and the changed code line). The de-
veloper brackets the original line with the negated #ver-
sion (15A) control to omit it for release 5A. Then the de-
veloper makes a copy of the line and brackets it within
#tversion controls for release 5A. Finally, the change is
made to the copied line. The #version lines also make
the source file more difficult to read and understand.
Figure 3 illustrates the frequencies of file sizes and the
frequencies of the proportion of #version lines to total
lines in a file. Data from one subsystem are shown. The
average proportion of #version lines to all lines is 14%
and the largest proportion is 67%.

3 VE: A Version-sensitive Editor

To make it easier for developers to cope with #ver-
sion directives, a version-sensitive editor (VE) was made
available in the project under consideration [8, 23, 3].

if (!PreCheckRoute(route))
return FAIL;
#version (4A)
dest = GetDest(route);
if (dest.port == 0) {
return(RoutelLocal(route));
}
#endversion (4A)
DoRoute(route);

if ('PreCheckRoute(route))
return FAIL;
#version (4A)
dest = GetDest(route);
#version (!5A)
if (dest.port == 0) {
#endversion (!5A)
#version (5A)
if (dest.port == 0 || dest.module == 0) {
#endversion (5A)
return(RouteLocal(route));
}
#endversion (4A)
DoRoute(route);

Figure 2: Before and after a Release 5A change. Em-
boldened lines are the code added by the programmer.

3.1 The VE tool

VE allows the developer to edit in a view that shows
only the code that will be extracted for the release be-
ing changed. The tool also performs the automatic in-
sertion of any necessary #version lines. For example,
the insertion of a new line for release 5A in an area that
does not have any release 5A code will automatically
produce the required #version around the line. Like-
wise, a change to a line will automatically produce the
#version for the negation of 5A which will exclude the
existing line for 5A, and insert the changed line with
#version to include the change for 5A (as in Figure 2).

The developer’s view is of normal editing in the ex-
tracted code; VE manages the changes to the #ver-
sion lines according to the constraints described in Sec-
tion 2.2. Figure 4 shows the view presented by VE for
the file from Figure 2. In VE, the developer only has
to use standard editing commands to effect the change
to the if-then statement, and VE inserts the required
#version directives (behind the scenes). VE behaves
like either vi or emacs, the two standard editors used
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one subsystem.

if ('PreCheckRoute(route))
return FAIL;
dest = GetDest(route);
o if (dest.port == 0 || dest.module == 0) {
return(RouteLocal(route));

}

DoRoute(route);

MR 12467 by dla,97/9/21,assigned [Local routing]
Versioning: 5A inside 4A
"route.c” [modified] line 67 of 241

Figure 4: Release 5A view in VE with change in bold

by most of the developers in the project. In fact, the
appearance to the developer is that of using the stan-
dard editor with the extended behavior of dealing with
#tversion lines automatically.

For this study, a noteworthy aspect of VE is that it
leaves a signature on all of the #version control lines
that it generates. This signature consists of trailing
white space (a combination of space and tab charac-
ters) that uniquely distinguishes the control line from
any control line generated for any other change.? This
was done to avoid unwanted dependencies caused by

2In fact, the trailing spaces and tabs encode the current delta
number in the underlying SCCS file. As a result, even if devel-
opers copy VE-generated #version lines using an ordinary text
editor, we can determine that this was a hand change with high
probability (because the delta number of the signature will most
likely disagree with the current delta number of the underlying
SCCS file).
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Figure 5: VE usage over time.

SCCS’s use of the Unix diff utility. Source files can
contain many identical #version lines, and this similar-
ity can in some cases cause SCCS to store a change as
if it affected #version lines that the developer did not
touch. VE essentially mimics an observed manual prac-
tice done to avoid this type of dependency. However,
VE produces the trailing white space on every #ver-
sion line it generates with an algorithm that uniquely
identifies the lines as produced by VE. Since the use
of VE is optional in the project, this “feature” of VE
allows us to distinguish when VE was used to make a
change involving #version lines from when the change
was made using an ordinary editor.

Figure 5 shows the history of VE usage in the consid-
ered project, which consists of approximately 600,000
MRs. The three lines show the percentage of MRs that
were done with VE (V: MRs such that all deltas of the
MR contained #version lines with the VE signature),
without VE (H: MRs such that some delta of the MR
contained a #version line without the VE signature),
and without #version lines (N: MRs such that no delta
in the MR contained a #version line). The usage of VE
increased dramatically over time. Around 45% of the
changes in 1998 do not involve #version lines and, con-
sequently, we do not know for certain whether or not
the VE was used. For the changes involving #version
lines approximately 55% are done using VE.

Figure 6 shows how developers used VE over time.
The curves show for every year the fraction of developers
who completed:

e more MRs entirely with VE than entirely by hand
that year (VE > H);

o at least one MR entirely with VE that year (VE >
0);
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Figure 6: Fraction of developers using VE over time.

e at least one MR entirely by hand that year (H > 0);

e completed at least one MR entirely with VE at
some point in the past (“tried VE”).

Figure 6 shows that while 89% all of the developers
have tried VE at some point in the past by the end of
year 1999, only 84% of them (74% of the total) have used
VE during 1999. 63% of developers continue performing
at least some changes involving #version lines by hand
and about 55% use VE more frequently on such changes
than doing them by hand. The figure answers basic tool
deployment questions:

e How many developers tried the VE tool?

e Of the ones that use VE do they use VE more fre-
quently than change code by hand?

e How many never change #version lines by hand?

The population that has not tried the tool (20%) needs
to know about tool’s existence and may require training.
People who have tried it but don’t use it any more (10%)
and people who make changes by hand more frequently
than using VE (20%) should be surveyed to find if there
are problems with VE or if new features have to be
added.

3.2 Anecdotal Evidence of the Effective-
ness of VE

The statistical study in the next section shows an in-
crease in productivity of developers when VE is used
to make changes, but cannot point to what aspect of
the tool is responsible for this improvement. However,
comments from users of the tool suggest that the pro-
ductivity improvement is due to the reduction of effort

that is required when manually coding #version lines
to make changes.

One developer reported having to make a conceptu-
ally simple change that was nearly impossible to make
without VE. The change required the renaming of a
symbol in a source file. Since the file had many #ver-
sion lines and the change had to be made for one ver-
sion without affecting any of the others, making the
change meant manually determining each occurrence of
the symbol that extracted for the target version. If the
line was already within the desired #version construct,
then the symbol could simply be changed. If not, then
the existing line would have to be “versioned out” for
the target version, and a copy of the line with the change
“versioned in” (akin to the change made in Figure 2).
Since there were nearly a hundred occurrences of the
symbol, examining each one to determine if it needed
to be changed and then determining how it should be
changed would not only be extremely time consuming,
but also error prone. With VE, the developer could set
the view to the extracted version and simply give one
global substitute command to change all the occurrences
of the symbol. VE guaranteed that the proper #version
directives were inserted automatically, thus reducing the
task to a matter of minutes.

Other developers reported that the automatic han-
dling of #version constructs prevented them from
producing incorrect or corrupted fFversion constructs,
which often occurred with manual editing and required
significant time to track down and fix.

Users also reported that aside from the automatic in-
sertion of #version constructs, the ability of VE to dis-
play the extracted view in the editor made it much eas-
ier to understand the code in a file with complex #ver-
sioning and locate the lines that needed to be changed.
ECMS provides commands for performing extraction to
be able to see the code as the compiler sees it. How-
ever, in a heavily #versioned file, there may be many
similar or identical lines that are targeted for separate
versions, and locating which of the lines are relevant to
the version needing to be changed can require significant
effort.

Some experienced developers reported that having a
tool perform the #version work automatically resulted
in far fewer questions from less experienced develop-
ers about how to code #version lines correctly. This
suggests that the less experienced developers are able
to be much more productive with VE. In addition, the
consulting work load on the experienced developers is
reduced, although that effect is difficult to measure di-
rectly.



4 Developer Effort Estimation

Since VE leaves a visible signature in the version his-
tory, all the necessary data are in place for measuring
how helpful VE can be to developers. We hypothesize
that when making changes involving #version lines, de-
velopers are more effective when using VE than when
using standard text editors. In this section we describe
a general methodology, introduced in [12], for measur-
ing the influence of various factors on the effort required
to make a change, using the change history of a version
control system and periodic time sheet data. In Sec-
tion 5, we apply this methodology to the problem of
measuring the effect of the VE tool.

In principle, if measurements of effort for each change
completed by developers were available, we could fit a
regression model such as

E(effort) = apEvV X IBTYPE x Size? x GTOOL (1)

in order to obtain estimates of the effects on effort of
the following variables:

e DEV: developer identity;

e TYPE: type of change, which ranges over the val-
ues NEW, BUG, CLEANUP, INSPECT (see Sec-
tion 2.1);

e Size: size of change, which is the number of deltas
in an MR;

e TOOL: use or non-use of VE, which ranges over
the values VE, HAND, NONE (NONE means the
change did not contain any #version lines).

Previous work [12, 13, 28] discusses which variables are
important to include in the model. The size of an MR
can be measured by the number of lines added, or by
the number of deltas. The number of deltas is usually
a better predictor because it is less likely to contain
outliers, as some MRs changed or introduced abnor-
mally large numbers of lines. Although there are several
types of changes (TYPE), typically only the repair ac-
tivity (BUG) exhibits significantly different properties
because repairs may require a lot of effort but, in the
end, may affect only one line in one file. Tool usage
(TOOL) has three possible values, as we want to con-
trast changes done exclusively using the tool (VE) to
changes done by hand (HAND) and to the control set of
changes where no #version lines were present (NONE).

Unfortunately, version control systems do not record
measurements of developer effort, so our algorithm
makes use of monthly time sheet data instead. This
algorithm, as shown in [13], is an example of the
Expectation-Maximization (EM) algorithm [10]. The
EM algorithm is widely used in statistics for the pur-
pose of maximum likelihood estimation in the presence

Jan Feb Mar Apr | Total

Effort for MR A | 7 ? ? ? 7?
Effort for MR B | 0 ? ? 0 77
Effort for MR C | 0 0 ? ? 7?

reported effort 1.0 10 15 1.0

Table 1: Data available in effort estimation problem, for
a single developer.

of missing data. Table 1 illustrates, for a single devel-
oper, the available data. Rows in the table correspond
to changes completed by the developer, and columns to
months, so that each cell in the table is the amount of
effort the developer devoted to a particular change in a
given month. Monthly time sheet data record the sums
of the entries in each column: how much total effort a
developer expended in a month. We also know which
changes a developer worked on during each month, and
a developer’s total effort needs to be divided across these
changes.

The row sums, if we knew them, would be effort mea-
surements for each change, and we could use regression
to relate these measurements to quantities such as the
size of the change or whether the tool was used. The
idea behind the algorithm is to begin with a guess at
the change efforts and alternately use regression mod-
els and the time sheet data to refine our initial guess.
In the process we will refine our understanding of the
factors that affect change effort through the changing
coefficients in the regression models. Define

where Yj;q is the amount of effort spent on the MR ¢
in month j by the developer d. M, N, and D are the
total numbers of MRs, months, and developers respec-
tively. Further define Yj;4(t) to be the estimate of the
unobservable Y;q at the tth iteration of the algorithm.
It will be convenient to allow t to take half-integral val-
ues, to indicate estimates at intermediate points in an
iteration of the algorithm. We will also use “dot” no-
tation with the Y;;4’s and Y;;4(t)’s to indicate summing
over an index, e.g.

M
Yq= Z Yijq
=1

are the known amounts of effort expended by developer
d in month j.

To construct an initial guess, we divide up each known
monthly effort equally across all changes open in that
month (see Table 2):

if Yija > 0, Yija(0) = [{i" : Yirja > 0}[' Y



Jan Feb Mar Apr | Total
Effort for MR A | 1.0 0.5 05 0.5 2.5
Effort for MR B | 0 0.5 0.5 0 1.0
Effort for MR C | 0 0 0.5 05 1.0
reported effort 1.0 10 15 1.0

Table 2: Initialization of effort modeling algorithm: di-
vide developers’ known monthly effort values evenly
across MRs open in those months. At this point the
algorithm fits a regression model for MR effort, using
(2.5, 1.0, 1.0) as the dependent variable measurements
for this developer.

Fitted
Jan Feb Mar Apr | Total
Effort for MR A | 0.8 04 04 04 2.0
Effort for MR B 0 04 04 0 0.8
Effort for MR C | 0 0 0.8 0.8 1.6
reported effort 1.0 1.0 15 1.0

Table 3: Rescaling developers’ monthly MR efforts so
that the total efforts for each MR equal the prediction
from the fitted model, which here predicted 2.0, 0.8, and
1.6 months of effort for the three MRs.

Then repeat the following four steps for each iteration
t=0,1,2,... until convergence:

1. Compute row sums to obtain estimates of total MR,
efforts, for each developer (see Table 2):

N

Yea(t) = Y Yijalt):

i=1

2. Fit a regression model of imputed MR effort on the
factors that predict MR effort. We prefer to use
generalized linear models [17] of the form of Equa-
tion (1), given in Section 4. Denote the resulting
fitted values Y;.4(¢).

3. For each developer d, rescale the rows in the im-
puted monthly MR effort table so that the new row
sums are equal to the regression’s fitted values (see
Table 3):

Yija(t +1/2) = Yija(0){D_ Yiea(t)} ' Yiea(?)-
=1

4. For each developer d, rescale the columns of the
table so that the column sums are equal to the ob-
served monthly efforts (see Table 4):

M

Yija(t+1) = Yiga(t+1/2){>_ Yija(t+1/2)} ' Vja.
k=1

Jan Feb Mar  Apr | Total

Effort for MR A | 1.0 0.5 0.375 0.333 | 2.208
Effort for MR B | 0 0.5 0.375 0 0.875
Effort for MR C | 0 0 0.75 0.667 | 1.417

reported effort 1.0 1.0 1.5 1.0

Table 4: Rescaling developers’ monthly MR efforts so
that in each month the developer spent the correct
amount of total effort. The next regression model will
use (2.208, 0.875, 1.417) as the dependent variable for
this developer.

Convergence of this algorithm means that the improve-
ment in the error measure in the model fitting step is
negligible. The algorithm has converged in every ap-
plication we have tried; in fact it is guaranteed to con-
verge because it is an EM algorithm [13]. Ten or fewer
iterations are generally sufficient for establishing the re-
gression coefficients to three significant figures, which is
enough precision since the standard error of coefficients
tends to be of a larger magnitude. After convergence,
we report the coefficients in the final regression model.

Since the regression model is necessary for improv-
ing our estimates of change effort, it is necessary to
make sure that the model includes quantities which are
known to be closely related to change effort. We have
found that the models should include coefficients which
depend on the developer, since variations in developer
productivity are often quite large [4, 9]. The model
should also include a measure of the size of a change,
such as the number of lines changed or the number of
deltas making up the change. Whether the change is
a bug fix, new feature development, cleanup effort, or
inspection rework, is also important.

We have found that because developers almost always
report very nearly one unit of effort per month, one can
replace these reported monthly effort data using the as-
sumption that each developer contributes one unit of
effort each month, without changing the results sub-
stantially.

An important component of the inference method-
ology is assessing how certain one can be about the
values estimated for the coefficients in the final regres-
sion model. As discussed in [12], we use the “jackknife”
method, which consists of removing one developer from
the list we used, running the algorithm again, repeat-
ing once for each developer, and observing how much
the coefficients change depending on which developer is
omitted. The jackknife produces estimates of the stan-
dard error of each of the regression coefficients. This
standard error can then be used to construct confidence
intervals for regression coefficients and, in particular, to
test hypotheses such as “the tool has no effect on change



effort” and to attach measures of statistical significance
to these hypotheses. While statements about statistical
significance derived from observational data should be
interpreted with some care, we believe that in this study
we have controlled for potential sources of confounding
sufficiently well that calculated p-values are useful mea-
sures of variable importance.

5 Effectiveness of the Version-
Editor Tool

This section investigates whether or not the VE tool re-
duced the effort needed to make changes involving #ver-
sion lines. Our analysis proceeds in three steps:

1. Tag each delta and MR with VE signature infor-
mation;

2. Select a balanced set of developers;

3. Estimate the effect of the VE tool using the effort
estimation algorithm of the previous section.

At the end of the section we summarize measures taken
to ensure the validity of the results.

5.1 Extraction of VE signature for each
delta

As described in Section 3, VE leaves a signature in
SCCS files because of the trailing white space it inserts
after the #£version lines. We wrote a program that pro-
cessed all 27 gigabytes of SCCS records for the soft-
ware project under consideration and identified three
attributes for each delta:

1. number of #version lines;
2. number of #version lines with VE signature;
3. number of #version lines without VE signature.

This information was used to identify the deltas where
the usage of VE was not likely to have impact (i.e.,
those deltas that contain no #version lines), and where
the usage should have an impact (presence of #version
lines).

As defined in Section 2, an MR typically consists of
several deltas. It is possible that some of the deltas in
one MR have a VE signature and others do not. This
does not happen frequently: only 1.8% of the MRs had
this property in the entire dataset of 600,000 MRs and
in the analyzed sample of 3,400 MRs (we selected this
sample of MRs by choosing a subset of developers as
described below). We marked such changes for anal-
ysis purposes as made by hand, since according to our
null hypothesis (VE does not reduce developer effort for

changes involving #version lines) such marking should
not have any impact. If, however, VE reduces devel-
oper effort, then such marking would only make it more
difficult for the VE effect to show up as statistically
significant.

5.2 Developer selection

The variability in project size, developer capability and
experience are the largest sources of variability in soft-
ware development (see, for example, [4, 9]). The effects
of tools and process are often smaller by an order of
magnitude. To obtain the sharpest results on the effect
of a given tool in the presence of developer variability, it
is important to have observations of the same developer
changing files both using the tool and performing the
work without the aid of the tool.

We focused on developers who made substantial num-
bers of changes requiring modifications of #version
lines, both with and without the VE tool. Also it is
preferable to consider developers that had similar work
profiles (i.e., made similar numbers of changes). Given
the considerable size of the version history data avail-
able, both tasks were easy: we selected developers who
made between 300 and 500 MRs in the six year period
between 1990 and 1995 and had similar numbers (more
than 40) of MRs done with and without VE. This re-
sulted in a sample of 9 developers.

5.3 Effort drivers

We fitted two models based on Equation 1 (see Sec-
tion 4), estimated standard errors using the jackknife
method, and obtained the following results, as summa-
rized in Table 5. In the first model we included MR
measures that our previous experience indicated might
affect the effort. We fit the second model using only a
minimal set of predictors that we found significant in
the full model. The exact regression formulas for each
model were:

E(effort) = #delta®® x #lines added*? x
BBUG X BCLEANUP X BINSPECT X

YHAND X YNONE X H ODeveloper;
i

E(effort) = pBua X YHAND X YNONE X HéDeveloperi
i

In these formulas, we use fBgug as a shorthand for
exp (I(BUG) log fruc), where I(BUG) is 1 if the MR
is a defect fix and 0 otherwise.

The penalty for failing to use VE in the presence of
#version lines is the coefficient vy 4np, which indicates
an increase of about 40% to 50% in the effort required
to complete an MR. (This coefficient was statistically
significant at the 5% level). Restated, if a developer



performs three changes to code involving #version lines
in a given amount of time without VE, the same de-
veloper using VE could perform, on the average, four
changes of the same size and type to the same code.
At the same time, changes performed using VE were of
the same difficulty (requiring a statistically insignificant
(1 — ynvonE ~ 25%) increase in effort) as changes with
no #version lines at all. There is a large uncertainty in
the estimated coefficients: the 95% confidence interval
for yganp is [1.01,2.1] for the full model (effort sav-
ings range between one and 110%) and [1.04,2.2] for
the minimal model (effort savings range between four
and 120%).

We were successful in selecting similar developers: the
ratio between the largest and smallest developer coeffi-
cients was 1.65 for the full model and 1.68 for the min-
imal model, which would mean that the least efficient
developer would require 68% additional effort to make
a change compared to the most efficient developer, but
the jackknife standard errors indicated that a difference
of this size was not large enough to be distinguishable
from random fluctuations (i.e. there was no statisti-
cally significant evidence that the developers differed).
This fact indicates that we were successful in selecting
“similar” developers for our sample.

The type of a change was a significant predictor of
the effort required to make it, as bug fixes were 50%
more difficult than comparably sized additions of new
functionality. Improving the structure of the code, the
third primary reason for change (see, for example, [30])
was of comparable difficulty to adding new code, as was
a fourth class of changes, implementing code inspection
suggestions.

The coefficients a; and as were not significantly dif-
ferent from zero in the full model, so the size measures
were omitted from the minimal model. That is, the size
of a change as measured by the number of lines added
and number of deltas did not have a particularly strong
effect on the effort required to make it, given the devel-
oper and the type of change.

5.4 Validity of the results

To ensure that the estimated effects were valid, a num-
ber of steps were taken.

First, we took a conservative approach (under the null
hypothesis) to mark all changes that contained a delta
with the VE signature and a delta without the VE sig-
nature as done by hand.

Second, we selected a balanced set of developers with
similar change profiles to reduce inherent variability in
developer performance. This was achieved by choosing
developers who were actively changing the code in the
considered six year period (1990 to 1995) and making
similar numbers of changes (300 to 500) in that period.
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Model Coefficient | Estimate | p-val | 95% CI
ay 0.15 04 [—.2,0.5]
Qs -0.08 0.3 —.2,0.1]
Beua 1.44 0.01 | [1.1,1.8]
Full BcLeanuvp | 0.6 0.4 0.2,2]
PnspecTion | 0.7 0.8 .01,7.6]
YHAND 1.46 0.04 | [1.01,2.1]
NONE 0.7 0.3 0.4,1.3]
Brua 1.5 0.00 1.2,2]
Minimal YHAND 1.5 0.03 1.04,2.2]
YNONE 0.8 0.3 0.4,1.4]

Table 5: Results from model fitting. CI = confidence
interval

Third, we made sure the tool effect would be identi-
fiable from the sample given other key factors affecting
the change effort - size, type, and developer. In linear
regression, this is referred to as checking for collinear-
ity. Ignoring such relationships could lead to situations
where the tool effect would be indistinguishable from
other factors affecting change effort.

We first checked for interactions between developers
and VE usage. Such interactions occur frequently (de-
velopers tend either to use VE or not to use VE). From
the set of developers selected in the second step we chose
only those that had similar numbers of changes with
and without VE and performed at least 40 changes un-
der each condition. This brought us to the final sample
of 9 developers we used in the analysis.

The relationship between the tool usage and the size
of a change was insignificant. However, the interaction
with the type of change was strong. New code was more
likely to be done without VE, while bug fixes were more
likely to be done with VE. This interaction confounds
the tool effect with a factor known to influence the dif-
ficulty of a change. However, this interaction makes it
more difficult to find significant positive effects of VE,
since bug fixes require more effort and are more often
done using VE.

To verify that the interaction is not affecting the re-
sults, we fitted the model with no factor for the type
of change. The results are in Table 6. The estimated
VE coeflicient did not change from the original model
in Table 5, but the variance of the estimate increased
(indicated by wider confidence interval) because of the
additional variability caused by not adjusting for the
change type factor.

Fourth, we validated the models using the jackknife
method. We compared the effect of VE for changes that
have similar values of the primary cost drivers (devel-
oper, size of change, type of change). These drivers
were found to affect the effort significantly in [12]. Us-




Coefficient | Estimate | p-val | 95%CI
YHAND 1.5 .04 1.01,2.2]
YNONE 0.8 0.37 0.5,1.4]

Table 6: Results for a model with no type factor.

ing the jackknife, we measured the significance of the
effects given by the model. More details on validation,
the model fitting and the algorithm are in [12].

Despite all these checks, the results warrant some cau-
tion. Although the selected developers performed simi-
lar numbers of changes with and without VE, the pat-
tern was not independent of time. Eight out of nine
developers gradually moved towards exclusive usage of
VE, while one abandoned usage of the tool over the
considered period. Because of this imbalance, the tool
usage factor is confounded with time and other factors
such as natural decay of the software architecture. Be-
cause of the nature of the observational study, other
confounding factors might be present despite all the pre-
cautions taken.

6 Development Interval and

Change Quality

In addition to investigating the impact of VE on the
effort expended for single MRs, we investigated the im-
pact of VE on feature interval and on the quality of the
changes.

6.1 Impact of VE on Feature Interval

While MR interval is an important part of an overall
development interval, it is not obvious how to combine
individual MR intervals to obtain the total interval for a
customer delivery. Consequently, we decided to directly
measure the interval for the software features (or work
items as they are called in the considered project). The
software features are delivered to customers and bring
revenue, therefore there is an essential business need to
reduce the time it takes to develop a feature.

Each feature in the project was related to a set of
MRs and deltas. We calculated the interval of each fea-
ture as the time between the first and the last delta
produced for that feature. Such calculation does not
constitute the entire feature interval (which includes
work on requirements, design and testing). To calibrate
the MR-derived interval we obtained the information
on full feature interval for 63 regular features from two
recent releases of the product. The interval was mea-
sured between the process steps of “detailed estimation
completed” and “begin managed introduction” of the
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Figure 7: MR-derived feature interval smoothed over
time.

corresponding release. The mean of the full interval
was 570 days. The median ratio of MR-derived interval
to full interval was approximately 0.6 indicating that
more than half of full feature interval is captured by the
MR-derived interval. These findings are similar to inde-
pendent estimates made by a product team tasked with
reducing interval in the feature releases.

Given that VE reduces effort for individual MRs, it
is natural to expect that it would reduce MR interval
and, possibly, feature interval. To test this hypothesis
we compared the MR-derived feature interval for fea-
tures where VE was exclusively used for changes in-
volving #version lines versus the rest of the features in-
volving #version lines. First we excluded features that
were started after December 1998, because these fea-
tures might not be completed yet. We also excluded
features that did not modify #version lines and very
old features started before 1992, because VE was not
extensively used then, and feature intervals tended to
be longer (see Figure 7), thereby potentially increasing
the VE effect. The 436 features where VE was exclu-
sively used had a median MR-derived interval of 149
days and the 2779 other features had a median MR-
derived interval of 442 days. This comparison is slightly
biased because the non-exclusively-VE features tended
to be larger, their size accounting for the part of the
longer interval.

To perform a more precise comparison we fitted a re-
gression model including feature size in terms of number
of deltas. The regression equation:

log Interval = 81 + (2 log Size + B3VE + error,

where Interval is measured in days, Size in number of



Variable Estimate | Std. Error | p-value
Intercept (51) 2.94 0.06 < 0.01
log Size (82) 0.58 0.01 < 0.01

VE (83) -0.46 0.06 < 0.01

Table 7: Feature interval regression.

delta and VE is an indicator of whether VE was used
exclusively for changes involving #version lines. The
size and interval were transformed to make their distri-
bution closer to a Gaussian distribution. A computed R
value of 0.62 indicates a good model fit and the ANOVA
table given in Table 7 shows a highly significant impact
of the VE tool. For example, a predicted interval for a
median sized feature of 137 deltas would take 176 days
with VE and 279 days without VE. Using our estimates
of the full feature interval we would get approximately
a (279 — 176)/176 * 0.6 = 35% increase in full feature
interval for features that did not exclusively use VE. It
is worth noting, that this number is very similar to the
estimate of the decrease in individual MR effort.

6.2 Impact of VE on MR Quality

Developers using VE have a simpler view of the source
code without the plethora of #version directives. This
leads to the hypothesis that VE may reduce the likeli-
hood that a software change would fail after being de-
livered to the customer.

The project under study has kept the information on
all MRs that were delivered to customers as patches or
“software updates”. In each case when a patch failed, a
root cause analysis was done and the MRs that caused
the failure were identified and recorded (for more de-
tail see [20]). To evaluate the effect of VE on software
update failures, we calculated the fraction of MRs con-
taining #version directives that failed when delivered in
software updates, MRs done entirely using VE (1.45%)
and the same fraction for MRs done not entirely with
VE (2.94%). The difference indicates that VE might re-
duce the probability that an MR would cause a failure
in a software update.

We then applied a more rigorous failure probability
modeling, as described in [20], but the non-usage of VE
was not a significant predictor that an MR would cause
a software update to fail. However, VE might affect that
probability indirectly because the features with exclu-
sive use of VE tend to be smaller (have fewer deltas,
add fewer lines, and touch fewer subsystems) and the
size of an MR is an important predictor of its failure
probability (with larger MRs having higher probability
to fail).

7 Related Work

There is a substantial amount of work on evaluating
software tools, which falls into three broad categories:
controlled experiments on software tool use, software
tool assessment, and case studies of software tool use.
We also review related work on effort estimation in soft-
ware projects.

7.1 Controlled Experiments on Soft-
ware Tool Use

Controlled experiments on software tools typically use
two groups to evaluate a tool on a given task: a study
group that uses the tool and a control group that
does not use the tool. Such experiments have been
done on program slicing tools [16], algorithm anima-
tion tools [15], and structured editors [22], to name but
a few. The study of Ormerod [22] is interesting because
of the detailed level of tool instrumentation: a log of all
keystrokes entered into a structured editor for Prolog
was recorded and used to identify edits, edit times, and
errors made. There is a huge body of work in the Hu-
man Computer Interaction community that deals with
the related issue of user interface design and evaluation.
Many such studies evaluate how different user interfaces
affect task performance [11, 27]. Of course, our study
is not a controlled experiment, although we did con-
trol for developer variability (see Section 5). We have
analyzed historical project data (time sheet data, and
version control data), while controlling for confounding
variables.

7.2 Software Tool Assessment

Software tool assessment is an industry of substantial
size. As summarized by Poston and Sexton [24], the
software tool assessment process consists of the follow-
ing basic steps:

1. identifying and quantifying user needs;
2. establishing tool-selection criteria;
3. finding available tools;

4. selecting tools and estimating the return on invest-
ment;

5. acquiring a tool and customizing it to better fit the
environment;

6. monitoring of tool usage to determine the impact
of a tool.

Many tool assessment processes and standards (such
as IEEE Standard 1175) focus on the use of forms to
gather data to guide the first five steps of the above



process [21, 24]. These include forms for needs analy-
sis, tool-selection criteria, tool classification, and tool-
to-organization and tool-to-tool relationships. Our work
complements such work by addressing the final point (6)
above. We use a highly-automated technique combin-
ing tool usage information with change effort analysis
to estimate the impact of a tool in an organization.

Brown and Wallnau [6] present a framework for evalu-
ating software technology. They observe that “technol-
ogy evaluations are generally ad-hoc, heavily reliant on
the evaluation staff’s skills and intuition”. Their frame-
work is based on the idea of “technology deltas”, by
which they mean two things: how one tool differs from
another, and how the differences between tools address
specific needs. In our case study, the “delta” between
VE and a standard text editor is the ability to manage
#tversion directives for the developer.

7.3 Case Studies

Kitchenham, Pickard and Pfleeger present a framework
and guidelines for performing case studies of software
tools and methods [14]. They observe that a case study
may be preferred over a formal experiment if the effect
of a new tool cannot be identified immediately, which
was certainly the case with the VE tool. Our case study
made use of historical data to identify the impact of
the VE tool over many years of use. Exactly how long
one needs to collect data in order to make such an as-
sessment is an open question. If the tool effect is very
strong, even a few months may suffice to obtain a sta-
tistically significant result, as was shown in [28].

Bruckhaus et al [7] present a case study of how
requirements-management, tools affected the productiv-
ity of requirements planners, across several projects.
Their goal was to find which projects would benefit from
new tools. In this study, they measured productivity
(after the fact) by the ratio of the number of features in
a project to total effort expended in the project (number
of minutes). They examined how the presence/absence
of a tool, project size and software process (simple or
complex) affect productivity. Measuring at this macro
level makes it difficult to separate the impact of the
tool from other confounding variables (such as experi-
ence, and size of the feature). Project and process could
be included as factors in our model.

7.4 Effort Estimation

Previous work on developing models of effort (of which
a recent example is [26]) has dwelt on predicting the ef-
fort that will be required to complete a nascent project.
The COCOMO model [5] and function points [1] are fre-
quent contributors to these predictions. Our problem is
substantially different as it works with smaller changes
(MRs as opposed to projects). Also, we derive estimates
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of the effort that was required for changes that were part
of already completed projects instead of concentrating
on prediction.

The work in this paper uses the effort estimation al-
gorithm introduced by Graves and Mockus [12], which
relates effort estimates to the size of an MR size and
the type of change. They later validated the algorithm
theoretically and via simulations [13]. An earlier ver-
sion of this paper [2] introduced how to use the effort
estimation algorithm to evaluate the effect of tool in a
development environment. The current paper builds on
this previous work by providing a more thorough ex-
perimental evaluation and a more detailed explanation
of our usage of the effort estimation algorithm. In ad-
dition, we performed new experiments to evaluate the
effect of VE on interval and quality.
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